## National Cancer Outcomes Database

A Collaborative Approach to Enhancing Patient Outcomes Analysis

June 21, 2010

#### SAS Institute

Ken Wright
Director R&D Solutions OnDemand

**Eric Brinsfield Director R&D Health and Life Sciences** 



## **About SAS** *Our Company*



- The leader in business analytics software and services, delivering THE POWER TO KNOW®
- \$2.31 billion worldwide revenue in 2009; an unbroken track record of revenue growth every year since 1976
- Continuous reinvestment in research and development, including 23% of revenue in 2009
- Ranked No. 1 on FORTUNE magazine's 2010 "100 Best Companies to Work For" in America list
- More than 11,000 employees, 400 offices and 600 alliances globally

#### **SAS Solutions OnDemand**

#### Software-as-a-Service and Enterprise Hosting

- Infrastructure: A secure, high-performance data processing infrastructure, with 99 percent or greater availability guaranteed in service level agreements.
- Expertise: "The right expert at the right time" for optimizing the infrastructure, the data warehousing foundation and the business intelligence applications the total solution.
- Communication: Single point of contact for customer liaison and project management, with "the buck stops here" accountability for the end-to-end solution.
- Flexibility: No up-front technology investments; allows customers to manage risk and scale for growth as their business dictates.

## **Definition of Cloud Computing (NIST)**

Fundamentally: on demand access to shared pool of computing resources

Measured Service Rapid Elasticity **Essential Characteristics** On-Demand **Broad Network** Resource Self Service Access **Pooling** Software as a **Service** Service (SaaS) **Models Deployment** ybr i d ommuni ty ubl i c ri vat e **Models** 

#### **High Performance Computing**

- Growing needs for:
  - Advanced analytics
  - Fast loading from many different data sources
  - High availability
- Massive parallel processing (MPP) and distributed computing
  - Allows for dividing tasks into smaller tasks and distributing them to many nodes in the cluster for parallel processing
  - Provides a distributed architectures for analysis

#### **National Cancer Outcomes Database**

Collaboration between NCI, NCCCP, and SAS



## National Cancer Outcomes Database Initial Project Objectives

- Design and implement Outcomes Data Model
- Load and standardize data from 4 NCCCP sites
- Provide comprehensive view of individual patients
- Summary Statistics on Historical Outcomes
  - » For treatment planning
  - » For evidence-based medicine
- Advanced analytical methods
  - » Association and sequence analysis
  - » Covariate analysis (adjusting for confounding)
  - » Predictive analytics
- Research high-performance computing options

#### **National Cancer Outcomes Database**

Logical Architecture



#### Select a Patient from the Search Results...



### **Patient Summary**



#### **Background of Patient in Patient Detail View**

This patient was diagnosed with prostate cancer in May of 2009.

| 5/1/2009 | T category: Tumor confined to prostate; Less than 50% one lobe      | T2a |
|----------|---------------------------------------------------------------------|-----|
| 5/1/2009 | N category: No regional lymph node involvement                      | N0  |
| 5/1/2009 | M category: No distant metastasis                                   | MO  |
| 5/1/2009 | Gleason score                                                       | 2   |
| 5/1/2009 | Histological grade finding ( Well differentiated (slight anaplasia) | G1  |
| 5/1/2009 | Stage                                                               | II  |

The patient was treated with 6 weeks of external beam radiation therapy for 10 minutes daily for 5 days a week.

ECOG performance scores were collected before treatment and at the end of each week of treatment.

6 months after completion of treatment, indications suggest that the prostate cancer is returning.

#### **Patient Encounters**



#### **Patient Observations**



## Patient Labs (Tabular)



## **Patient Labs (Graphical)**



### **Patient Diagnoses**



#### **Patient Interventions**



#### **Patient Outcomes**



## Patient Profile Timeline (1 year view)



## Patient Profile Timeline (Multi-year view)



## **Example Summary Analysis:**Subset Data and Analyze Treatments

- Automatically find cohort of patient that is similar to selected patient based on prognostic factors
  - Example: Prostate cancer
     Age group, sex, race, ethnicity, family history, personal history,
     PSA, prostate hypertrophy, urinary or rectal incontinence,
     Gleason score, TNM, and stage
- Obtain values from selected patients and find cohort with the same values
- Look for all treatment combinations found in this subset of data
- Analyze outcomes per treatment combination

#### **Treatment Outcomes for Prostate Cancer**



## **Compare Outcome Distributions**

Per Treatment Sequence



## **Rearrange Graphs**

#### Or Select Different Outcome Measure



#### Comparing Mortality Due to Prostate Cancer

For Androgen Deprivation Therapy Compared to All Other Treatments



#### **Advanced Analytics**

- The examples shown represent basic summarization for routine assessment of past outcomes
- Currently exploring advanced methods of analysis such as:
  - Attribute profiling and clustering
  - Treatment profiling and clustering
  - Association analysis for risk and prognostic factors and outcomes likelihood and probability
  - Simulation
  - Risk and prognostic prediction models per HOI
- Analysis is dependent on receiving patient data from NCCCPs.

### **Experimental Clustering of Treatments**







### **Decision Tree Analysis**



## **Decision Tree: Predicted Change in Mortality**



## **High Performance Analytic Computing**

Massively Parallel Process Database



## High Performance Analytic Computing In-Database Processing

- Statistical methods executed within the database
  - Thereby reducing data transfer
- SAS Data Step processing also supported
- Combination of in-database and parallel processing yields big performance boost

### **Summary**

#### The Combination of:

- Collaboration
- Community
- Medical knowledge and experience
- Technology
- Statistics
- Optimization
- SaaS and Cloud Computing

Leading to better patient outcomes

# Sas. THE POWER TO KNOW.